If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-2450=0
a = 2; b = 0; c = -2450;
Δ = b2-4ac
Δ = 02-4·2·(-2450)
Δ = 19600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19600}=140$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-140}{2*2}=\frac{-140}{4} =-35 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+140}{2*2}=\frac{140}{4} =35 $
| (3x+17)+(2x+15)=(10x+7) | | x^2=-x-13 | | -7n-6n=5(n+4)-3(1+6n) | | -52-3c=8 | | 32=9b-(-14) | | 99=s/7+89 | | -20x^2-7x=-6 | | 5y+2/4=3 | | 4/7=3(x+2) | | 3x+3/3=3 | | 20=10(j-96) | | 3/5•5/3=a | | m2+10=15m-34 | | y+7/9=3 | | -4x^2-8=-792 | | 7n+8+9n=-24 | | 5b-3=3b+3 | | x^2-9x=-27 | | +2(3x-2)=x+2 | | 19=25-3u | | a2+5a-20=30 | | 7(t-95)=21 | | 6(c+2)=2(c−2) | | 3(6x+1)=150+5(2x+1) | | 10x6.6+15=9(9) | | 8(4p+1)=32p8 | | 10x6.6+15=9(9( | | 3(a)+5(a)=40 | | t2+15t=-36 | | -3+4x=-x+7 | | 9x+9x+4x+4x=65 | | 13.7y=6.2y+30* |